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TIME AND PRODUCTION SYSTEMS

Richard M. Salter

Drexel University

ABSTRACT

- The utility of rule based production systems seems to be in
the ability to model domains consisting of Independent
states and actions, in which process interaction is minimal.
This methodology is suitable for domains outside of the
realm of human information processing, in particular, in
representing domains of continuous processes. We apply it
to the design of a world modeling system, where objects and
relationships are observed over time. 'We consider the
effects of embedding time into a rule based system, where
individual productions represent instantaneous events which
are grouped together to form processes. We illustrate by
discussing a particular implementation, the language CONCUR.--
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1. Introduction

The production system methodology has been successfully

used in the design of systems to solve various problems in

Artificial Intelligence, including expert systems, planning

and problem solving, and theorem proving [Ni801. It has

been suggested that production systems are able to make more

general use of the knowledge embedded within them because

they lack a prior procedural orientation towards this

knowledge. As a result, such systems are especially useful

in modeling domains in which a strong procedural correlation

of data would not naturally appear [Da76]. The production

system is therefore an appropriate tool in the design of

models for systems of independent processes whose

interactions can be defined in terms system state. An

example of this sort of application can be found in [Zis761,

in which a modified production system is used to model the

independent asynchronous concurrent processes which are part

of an office environment.

In general, we would like to consider the impact of the

production system methodology on the design of "world

models", that is, sets of objects and relationships that

vary over time. Such a model is used, for example, in

discrete robot planning systems such as STRIPS (Fi72]. We

are particularly interested in the use of production systems

in the implementation of the symbolic discrete event

I. ....__ _ _
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simulation [Zie76] system described in [He73] and [Lo771. A

principal feature of this simulation technique is its

ability to model continuous and concurrent processes using

operators acting on data structure representing the state of

the world. A rule based model seems appropriate since the

evolution of the domain in time depends both on continuously

changing parameters, and on the action of discrete

asynchronous events. The precondition-state transformation

structure for rules permits the modeling of discrete events

as a conditional set of actions. Processes, with which we

associate duration, can be composed of sequences of events

occurring at well defined times. A rule based system seems

to be the natural representation of a set of loosely coupled

processes whose interactions come about indirectly as a

result of their effects on the system state.

Certain other advantages of rule based systems seem to

reinforce its applicability to this problem domain. The

large degree or modularity of simulation programs written

using a rule based system would allow the user easy access

to the various complexities of the modeled world. The

control structure permits the actions of different processes

to interleave arbitrarily without prior control

specification by the user. Processes can be maintained as

unified activities without resorting to procedural

representations, and so permitting a larger range of

possible interactions.

'S_
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In this paper we will discuss the design of a rule

based simulation system. The principal feature from the

point of view of production system methodology is the

introduction of a continuous term, in this case time, as a

state parameter. We will discuss how knowledge about time

can be embedded into a rule based system; how such

knowledge affects the structure of the database, the rule

set, and the system control structure. The techniques

described in this paper have been used to implement the

CONCUR world modeling system [Sal8O], which is based upon

the ideas first presented in [He73]. We will illustrate

using CONCUR and a sample world, containing a robot, a

bucket, and a water tap, which has been discussed in detail

in [He731, [Lo771, and [Sal8o] (see Figure 1).

2. Domain Representation

The skeletal structure of the CONCUR system is close to

the classical production system formulation. Scenarios

(rules) contain initiation conditions (antecedents) which

are logical templates representing a set of possible states

of the world model database. An event occurs when the

initiation conditions of some scenario are successfully

matched against the world, and the instantaneous effects

(consequents) of an event can alter the database and the

scenario set.

4"_
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As in the planning system STRIPS [Fi721, the

representation of the world model consists of a set of

relations which are declarative and state-dependent. UnlikeI STRIPS, many attributes describe the world using numerical

parameters. Thus (AT ROBBY 10), (AT TAP 15), (GOTO ROBBY

15), (GRASPING ROBBY PAIL), (CONTENTS PAIL 10) can be used

to define the state of the world in terms of attribute value

parameters. The database can always be used to obtain a

shapshot of the world at some point in model time.

In any model there will generally be attributes whose

values are not constant in time. We can represent those

attributes by extending the syntactic range of the attribute

values to include expressions. Thus, in CONCUR syntax, (AT

ROBBY (* (PLUS (TIMES 3 (SUB TIME 3.1)) 10))) is also a

legal entry, which can be interpreted as a trajectory for

the location of a robot ROBBY over some range of model times

(the free variable TIME refers to the model clock).

Evaluating these expressions using the current model time

produces the snapshot value of the world. This syntax

permits the representation of an infinite number of

individual states of infinitesimal duration as extensional

knowledge within the database.

The active components of the system are a set of

STRIPS-type rules representing instantaneous changes to the

world. These "events" are organized into sequential

processes by scenarios which are, in effect, "super rules"

MIOWN,_
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whose preconditions coincide with the preconditions of the

first event in the process, and whose effects are mapped out

over time. For example, the GOTO scenario consists of two

events which correspond to the beginning and end of the

process of moving from one location to another. The first

event starts the motion by inserting an expression into the

location attribute, and the second stops it by replacing the

expression with a constant. The actual motion can be

conceptualized as a state of the system, as represented by

the expression itself. This paradigm allows us to define a

process occuring over some time duration in terms of the

instantaneous changes to the trajectories of the parameters

affected by process. The world model itself is then defined

by a set of parameters whose trajectories are modified at

discrete points in time by sequences of instantaneous

actions.

In CONCUR, the TIME parameter is ultimately the only

variable appearing in database expressions. This is because

scenarios creating expressions unwind all other variables

instantiated in the matching process until their (possibly

time dependent) values are arrived at. The template for

creating the above item could be (AT *ROBOT (!' (PLUS (TIMES

#SPEED (SUB TIME 'TIME)) *LOC))), where ROBOT, SPEED and LOC

are bound by initiation conditions, and 'TIME refers to the

current point in model time (i.e. the time at which the

expression is being created). We create the new database

Item by "quasi-quoting" (also known as "backquote", see

A _ _ _ _ _
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[ChBO]) this expression. This means that only terms

preceeded by an asterisk are evaluated. The evaluation of

such terms is complete in the current model, i.e. if any

term encountered in the evaluation process evaluates to a

formula, then that formula is also evaluated. The "0"

preceeding the new expression serves to "quote" the

asterisk, so that it will be passed into the new assertion

representing an evaluation call for the entire expression.

Templates such as these permit new trajectories to be

contingent on the values of attributes at the point in time

at which the event creating the trajectories occurs.

The use of discrete events to redefine trajectories

gives rise to time functions which are composed of piecewise

smooth curves. It is possible to approximate the behavior

of complex time functions with piecewise definitions using

only a limited set of expressions by correcting the

trajectories after small time intervals. We can, for

example, approximate the sinusoidal time function of the

simple harmonic motion of a spring using only polynomial

expressions by feeding back position and accelleration data

through discrete events occuring at fixed time intervals

(see Figure 2). The complexity of the resulting

approximations depends upon the repetoire of expressions

permitted in the database. The set of allowable expressions

is, however, limited by the control structure, as we shall

see below.
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3. Control Structure

In CONCUR, sets of sequentially ordered events are

represented in a single scenario. The initiation conditions

of the scenario are the preconditions of the first event of

the process. When a scenario is invoked, this first event

is fired, and a new scenario is created (if necessary)

representing the rest of the process. The details of this

representation are given below. Scenarios act as scripts

for processes which may involve numerous events over some

period of time. In most cases, representing processes using

a single syntactic unit simplifies the model by permitting

the logical grouping of sets of events that contribute to a

single activity.

As we are dealing with a simulation system we shall

only consider a control structure running in the forward

mode. In the dual problem of planning, which is also under

consideration, a more general control structure is required

(more on this below). The basic cycle classically selects a

single rule to invoke and re-evaluates the state of the

system on each iteration. Since this state is parameterized

by time, it becomes a required part of the selection process

to determine when, in terms of the model clock, an event is

to occur, and to order the selection in terms of these

times.
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This knowledge is embedded in the initiation conditions

of a scenario both directly and indirectly. Initiation

conditions are boolean expressions whose terms are either

templates to be matched against the database, or predicate

expressions which are to be evaluated in the environment

produced by the match. The variable TIME is global to all

such environments, and refers to current model time. It is

thus possible to include a term such as (EQ TIME 10.2), from

which it is easy to infer the invocation time of the event,

but any scenario containing such a precondition is clearly

of limited use. Other, more indirect terms such as (EQ LOCI

LOC2) or (LT LOCI LOC2) will set bounds on invocation times.

When all arguments to such predicates are constants, it is

possible to infer that either they are satisfied in the

current state, or some prior event must occur before they

ever will become true. In the search for the next event,

this analysis permits certain events to be ruled out. The

more interesting case is when one or more of the arguments

is represented by an expression, as we can now predict an

exact time or interval of viability by solving similtaneous

equations and/or inequalities. The pattern matcher is

extended to include these more complex criteria.

In CONCUR, each instantiation of the initiation

condition variables represents a potehtial event. During

the matching process all predicate terms with variables

bound to formulas remain unevaluated and are stored as part

of the match environment. The result of a successful match

- - - -- -*t
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will include a set of bindings and possibly a set of

equations and inequalities whose simultaneous solution will

yield a time at which all conditions will be satisfied. An

equation solver is used to determine a time interval

(assuming consistency) during which the event may take

place. Each potential event is therefore stamped with its

earliest iltiaiton time. The limitation on the

mathematical content of the time expressions is imposed only

by the capability of the equation solver. The problem of

determining the set of equations to solve is entirely

syntactic.

The initial part of the control cycle consif of

associating binding sets with initiation times to de - ne

the next event. It is possible that more than one event

will be stamped with the same earliest time. Any such group

of events can be regarded, from the point of view of the

model, as potentially simultaneous. The way in which this

is handled is a very important property of the model, and a

thorough discussion is beyond the scope of this paper. It

is worthwhile to note that to some extent this is a function

of the application; for example one may want to follow all

possible evolutions. It is not unrealistic to consider even

a simple nondeterministic selection if the properties

resulting from the choice are appropriate for the domain

being modeled. It is useful, whenever possible, to design

events which commute, so that conflict resolution will

impact only those instances which are crucial to the
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underlying model.

In the current CONCUR implementation, the scenario set

has a static total ordering. Among potential events with

the same earliest initiation time, the one associated with

the least scenario in the total order is chosen. If more

than one next event is associated with the same scenario,

then the choice is nondeterministic (actually it is

determined by the order in which the events were encountered

by the pattern matcher, but there is no way that this can be

controlled). The advantage of this is that by searching the

scenario space in order, we can conclude the search

immediately if any scenario binds an event which can

initiate at the current model time. In any schenm3 for

conflict resolution, the first criterion will always be

initiation time.

When an event is chosen, the model cl'ck is set to its

initiation time (possibly the current time) and the body of

its scenario is processed. The change- made by the invoked

rule are specified using add and delete functions. If the

process defined by the scenario contains additional events,

then a new scenario is inserted representing the remainder

of the process. A single control statement, CONTINU (called

RESUME in rSal80]), is used to s-parate the events of a

given process, and appears in the scenario following the

database changes. The format for a CONTINU argument is the

scenario defining the rest of the process. The process will

U-
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not alter the database again until the preconditions of this

scenario are satisfied. This scenario is placed in the

scenario set and remains there until it is activated once

([Wat71] discusses the idea of rules creating new rules).

In order for the new scenario to be able to refer to the

bindings of this activation, we close the new scenario in

that environment (see [St7] for a discussion of the use of

closures to implement class instances). Closed scenarios

replace the control blocks used in [He731 and [Lo77] as the

activation record of a given process. Note that the

contents of the executable part of a CONTTNU argument may

contain another CONTTNU, allowing a single scenario to

specify a sequence of events mapped out over time. (Clearly

some sort of recursive specification is actually required

here to express a possibly unbounded set of recurring

events. This would involve a small extension to the

implementation, but we have not yet settled on the

appropriate syntax for expressing such a capability).

4. Conclusion

We have described a methodology for the design of world

models which represent time dependent attributes as

arithmetic expressions, and have used the production system

formalism to manipulate this structure to produce discrete

event simulations of continuous processes. Our

representation presents processes as sequences of

. .. .__ _ _ __ _ _ __ _ _ __ _ __ _ _ __ _ _ _ "..- ' .'..4. 2



V
TIME AND PRODUCTION SYSTEMS Page 12

instantaneous state changes, with the intervening continuous

aspects represented directly in the database. This concept

yields a uniform set of active functions (events), described

simply by add-delete lists, which can create closures that

serve as control blocks. Aithough individual events are

tied together at a higher level, from the point of view of

the database actions are discrete and correspond to the

firing of production rules. It is in fact notable that the

basic cycle of event driven simulation [Fr77, p.18] is

analogous to the production system control structure once

the mechanism for updating model time is introduced.

Our work in simulation is currently dealing with

processes whose events need not necessarily be linearly

ordered. This situation was dealt with in (Zis77] using

Petri nets to describe the relationships between events. In

such a system scenarios are used only to describe individual

instantaneous events, while more complex procedural

structures are used to organize these events into processes.

Although ultimately events are fired in some total order,

the user is freed from necessarily specifying that order a

priori. We believe that this will give the user a larger

degree of expressiveness in designing complex processes.

With world models we are dealing with numerous

independent entities tied together by complex relationships

and operated upon by independent processes. While the

current application has been in the area of simulation,
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there is no reason why the same basic structure cannot be

used for other aspects of modeling, in particular to

implement planning systems that are cognizent of model time.

Such a system would require sets of rules which are dual to

the events described above. The biggest problem results

from the fact that simple equation solving can no longer be

used to discriminate between rules, as such equations tend

to contain too many uninstantiated terms. A higher level of

reasoning is required for some sort of equation analysis.

Aspects of this an; Isis will resemble the more classical

techniques of discrete planning, such as regression [Wal77]

and nonlinear and hierarchical planning [Sac771. This

research is currently in progress, and is reported on in

[Sal8l].

The methodology presented in this paper is an attempt

to utilize the power of rule based systems in a design for

symbolic world modeling, and a characterization of the

requirements for applying such systems to problem domains

which contain a continuous parameter, such as time. Our

success with applying preliminary implementations of CONCUR

to various different examples leads us to believe that the

technique of embedding time used here is appropriate for

expressing the dynamic evolution of these models.
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INITIAL DATABASE

(TYPE ROBBY ROBOT) (TYPE PAIL BUCKET)
(AT ROBBY 5) (GOTO ROBBY 10 2)
(GRASP ROBBY PAIL) (AT PAIL 8)
(FILL ROBBY PAIL VALVE 10 50) (AT VALVE 10)
(CAPACITY PAIL 200) (CONTENTS PAIL 25)
(RELEASE ROBBY PAIL 10)

EVENT SCENARIOS

SCENARIO GOTO

Init. Conds.: (GOTO =ROBOT =B =SPEED) (TYPE *ROBOT ROBOT) (AT *ROBOT =A)

Delete: (GOTO *ROBOT *B *SPEED)
Subst: (AT *ROBOT (!* (PLUS (MUL *SPEED (DIF TIME *TIME)) *A))

Continue When: (AT *ROBOT *B)
Subst: (AT *ROBOT ??)

SCENARIO TURN

Init. Conds.: (TURN =ROBOT =V =R) (TYPE *ROBOT ROBOT) (AT *ROBOT =LOC:)
(AT *V *LOC)

Delete: (TURN *ROBOT *V *R)
Add: (RATE *V *R)

*SCENARIO FILL

Init. Conds.: (FILL =ROBOT =BUCKET =V =LOC =R) (TYPE *ROBOT ROBOT)
(TYPE *BUCKET BUCKET) (AT *RODOT *LOC) (AT *BUCKET *LOC:)
(AT *V *LOC) (CAPACITY *BUCKET =CAP) (CONTENTS *BUCKET =CON))

Delete: (FILL *ROBOT *BUCKET *V *LOC *R)
Add: (TURN *ROBOT *V *R)
Continue When: (RATE *V *R)

Subst: (CONTENTS *BUCKET
(I *(PLUS (* (CONTENTS *BUCKET _)

(MUL *R (DIF TIME *TIME))))

Continue When: (1* (EQ (CONTENTS *BUCKET _) CAP))
Delete: (RATE *V *R)
Add: (RATE *V 0)

Subst: (CONTENTS *BUCKET ??)

Figure 1 - CONCUR Robot-Bucket World
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SCENARIO GRASP

Init. Conds.: (GRASP =ROBOT =OBJ) (AT *ROBOT =LOC) (AT *OBJ *LOC)
Delete: (GRASP *ROBOT *OBJ)
Add: (GRASPING *ROBOT *OBJ)
Subst: (AT *OBJ (-* (AT *ROBOT ))).

SCENARIO GRASPWATCH

Init. Conds.: (GRASPING =ROBOT =OBJ) (AT *ROBOT =LOC1) (AT *OBJ =LOC2)
(\ (* (EQ "- LOCI LOC2)))

Delete: (AT *OBJ ?"?)
Add: (AT *OBJ (-* (AT *ROBOT -))

SCENARIO RELEASE

Init. Conds.: (RELEASE =ROBOT =OBJ =X) (GRASPING *ROBOT *OBJ) (AT *ROBOT *X))
Delete: (GRASPING *ROBOT *OBJ)

(RELEASE *ROBOT *OB.J *X))
Subst: (AT *OBJ ??)

)

Fisure I - CONCUR Robot-Bucket World

-2Z-
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INITIAL DATABASE

(AT SPRINGl 1) (ACCEL SPRINGI 0)

(VELO SPRING1 0) (ADJ-ACC SPRINGI)

EVENT SCENARIOS

SCENARI10 SPRING-MOVE

Inmit. Conds..: (AT =SPRING =LOC) (AC:CEL *SPRING =A) (VELO *SPRING =V)
(ADJ-LOC *SPRING)

Delete: (ADJ-LOC *SPRING)
(AT *SPRINOa *LOC)

Add: (AT *SPRING
(*(PLUS *LOC

(PLUS (MLIL *V (SUB~ TIME *TIME))
(DIV (MUlL *A

(MUL (SLUB TIME *TIME)
(SUB TIME *TIME)))

2))) ))
Continue When: (*(EQ TIME (PLLUS *TIME 0.1)))

Add'. (ADJ-ACC *SPRING)

SCENARIO SPR I NG-ACCEL

)Init. Conds.: (AT =SPRING =LOC) (ACCEL *SPRINGi =A) (VELO *SPRING=V
(ADJ-ACC *SPRI NG:)

Delete: (ADJ-ACC *SPRING))
(ACCEL *SPRING *A)
(VELO *SPRING *V)

Add:, (ACCEL *SPRING (*(MINLUS LOC))))
(VELO *SPRING (*(PLLIS *V (MLIL (* (MINLUS LOC))

(SUIB TIME *TIME)))))
(ADJ-LOC *SPR ING')

Figure 2 -Spring World
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